翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Advanced Video Coding : ウィキペディア英語版
H.264/MPEG-4 AVC

H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) is a video coding format that is currently one of the most commonly used formats for the recording, compression, and distribution of video content. The final drafting work on the first version of the standard was completed in May 2003, and various extensions of its capabilities have been added in subsequent editions.
H.264/MPEG-4 AVC is a block-oriented motion-compensation-based video compression standard developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC JTC1 Moving Picture Experts Group (MPEG). The project partnership effort is known as the Joint Video Team (JVT). The ITU-T H.264 standard and the ISO/IEC MPEG-4 AVC standard (formally, ISO/IEC 14496-10 – MPEG-4 Part 10, Advanced Video Coding) are jointly maintained so that they have identical technical content.
H.264 is perhaps best known as being one of the video encoding standards for Blu-ray Discs; all Blu-ray Disc players must be able to decode H.264. It is also widely used by streaming internet sources, such as videos from Vimeo, YouTube, and the iTunes Store, web software such as the Adobe Flash Player and Microsoft Silverlight, and also various HDTV broadcasts over terrestrial (Advanced Television Systems Committee standards, ISDB-T, DVB-T or DVB-T2), cable (DVB-C), and satellite (DVB-S and DVB-S2).
H.264 is typically used for lossy compression in the strict mathematical sense, although the amount of loss may sometimes be imperceptible. It is also possible to create truly lossless encodings using it—e.g., to have localized lossless-coded regions within lossy-coded pictures or to support rare use cases for which the entire encoding is lossless.
High Efficiency Video Coding (HEVC), a.k.a. H.265 and MPEG-H Part 2 is a successor to H.264/MPEG-4 AVC developed by the same organizations, while earlier standards are still in common use.
H.264 is protected by patents owned by various parties, whose licensing is administered by patent pool MPEG LA. Commercial use of H.264 technologies requires the payment of royalties to MPEG LA, although the group has allowed the free use of H.264 technologies for streaming internet video that is free to end users, and Cisco Systems announced that it would pay royalties on behalf of the users of binaries for its open source H.264 encoder.
== Overview ==
The intent of the H.264/AVC project was to create a standard capable of providing good video quality at substantially lower bit rates than previous standards (i.e., half or less the bit rate of MPEG-2, H.263, or MPEG-4 Part 2), without increasing the complexity of design so much that it would be impractical or excessively expensive to implement. An additional goal was to provide enough flexibility to allow the standard to be applied to a wide variety of applications on a wide variety of networks and systems, including low and high bit rates, low and high resolution video, broadcast, DVD storage, RTP/IP packet networks, and ITU-T multimedia telephony systems.
The H.264 standard can be viewed as a "family of standards" composed of the profiles described below. A specific decoder decodes at least one, but not necessarily all profiles. The decoder specification describes which profiles can be decoded.
The H.264 name follows the ITU-T naming convention, where the standard is a member of the H.26x line of VCEG video coding standards; the MPEG-4 AVC name relates to the naming convention in ISO/IEC MPEG, where the standard is part 10 of ISO/IEC 14496, which is the suite of standards known as MPEG-4. The standard was developed jointly in a partnership of VCEG and MPEG, after earlier development work in the ITU-T as a VCEG project called H.26L. It is thus common to refer to the standard with names such as H.264/AVC, AVC/H.264, H.264/MPEG-4 AVC, or MPEG-4/H.264 AVC, to emphasize the common heritage. Occasionally, it is also referred to as "the JVT codec", in reference to the Joint Video Team (JVT) organization that developed it. (Such partnership and multiple naming is not uncommon. For example, the video compression standard known as MPEG-2 also arose from the partnership between MPEG and the ITU-T, where MPEG-2 video is known to the ITU-T community as H.262.〔(【引用サイトリンク】title=H.262 : Information technology — Generic coding of moving pictures and associated audio information: Video )〕) Some software programs (such as VLC media player) internally identify this standard as AVC1.
The standardization of the first version of H.264/AVC was completed in May 2003. In the first project to extend the original standard, the JVT then developed what was called the Fidelity Range Extensions (FRExt). These extensions enabled higher quality video coding by supporting increased sample bit depth precision and higher-resolution color information, including sampling structures known as Y'CbCr 4:2:2 (=YUV 4:2:2) and Y'CbCr 4:4:4. Several other features were also included in the Fidelity Range Extensions project, such as adaptive switching between 4×4 and 8×8 integer transforms, encoder-specified perceptual-based quantization weighting matrices, efficient inter-picture lossless coding, and support of additional color spaces. The design work on the Fidelity Range Extensions was completed in July 2004, and the drafting work on them was completed in September 2004.
Further recent extensions of the standard then included adding five other new profiles intended primarily for professional applications, adding extended-gamut color space support, defining additional aspect ratio indicators, defining two additional types of "supplemental enhancement information" (post-filter hint and tone mapping), and deprecating one of the prior FRExt profiles that industry feedback indicated should have been designed differently.
The next major feature added to the standard was Scalable Video Coding (SVC). Specified in Annex G of H.264/AVC, SVC allows the construction of bitstreams that contain sub-bitstreams that also conform to the standard, including one such bitstream known as the "base layer" that can be decoded by a H.264/AVC codec that does not support SVC. For temporal bitstream scalability (i.e., the presence of a sub-bitstream with a smaller temporal sampling rate than the main bitstream), complete access units are removed from the bitstream when deriving the sub-bitstream. In this case, high-level syntax and inter-prediction reference pictures in the bitstream are constructed accordingly. On the other hand, for spatial and quality bitstream scalability (i.e. the presence of a sub-bitstream with lower spatial resolution/quality than the main bitstream), the NAL (Network Abstraction Layer) is removed from the bitstream when deriving the sub-bitstream. In this case, inter-layer prediction (i.e., the prediction of the higher spatial resolution/quality signal from the data of the lower spatial resolution/quality signal) is typically used for efficient coding. The Scalable Video Coding extensions were completed in November 2007.
The next major feature added to the standard was Multiview Video Coding (MVC). Specified in Annex H of H.264/AVC, MVC enables the construction of bitstreams that represent more than one view of a video scene. An important example of this functionality is stereoscopic 3D video coding. Two profiles were developed in the MVC work: Multiview High Profile supports an arbitrary number of views, and Stereo High Profile is designed specifically for two-view stereoscopic video. The Multiview Video Coding extensions were completed in November 2009.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「H.264/MPEG-4 AVC」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.